Preloading policies for the Virtual Computing Lab

KEERTHANA BOLOOR

ECE Department, North Carolina State University
and

AARON PEELER

VCL, North Carolina State University

and

JOSH THOMPSON

VCL, North Carolina State University

and

YANNIS VINIOTIS

ECE Department, North Carolina State University

In the Virtual Computing Laboratory (VCL) users request a computing resource (e.g., a blade)
and customized software (an “image”). The software is loaded onto the blade from an image
server. If loading is performed at the time of the request, the user experiences a delay before
s/he can access the blade. This delay may be several minutes long, depending on the type of
image requested. A “preloading policy” aims at reducing this delay; the basic idea is to anticipate
what images may be requested in the future and start loading them onto free blades in advance
of reservations. In this paper, we define several preloading policies and show via simulation that
they can significantly reduce user-experienced delays. We drive the simulation with two sets of
workloads: (a) actual traces derived from historical data collected over several years of operations
at North Carolina State University’s VCL (approximately 155,000 reservations), and, (b) synthetic
workloads. Performance metrics include user-related ones (e.g., waiting time histograms and
averages) and system-related ones (e.g., blade/image utilization). We use the simulator to address
“what if”, system design questions and select system configuration parameters.

Categories and Subject Descriptors: C.4 [PERFORMANCE OF SYSTEMS]: Performance
attributes

General Terms: Algorithms, Performance, Experimentation

Additional Key Words and Phrases: Management

The work of K. Boloor and Y. Viniotis was supported in part by a Center for Advanced Computing
and Communications (CACC) grant. Corresponding author’s address: Department of Electrical
and Computer Engineering, Box 7911, NCSU, Raleigh, NC 27695. Email: candice@ncsu.edu.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 2008 ACM 1529-3785/2008,/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, May 2008, Pages 1-077.

2 . Keerthana Boloor et al

1. INTRODUCTION AND MOTIVATION

In a Virtual Computing Lab (VCL), users request a computing resource (e.g., a
blade) and customized software (an “image”, typically an operating system and
bundles of applications). The software is loaded onto the blade from an image
server. If loading is performed at the time of the request, the user experiences a
delay before s/he can access the blade. This delay may be several minutes long,
depending on the type of image requested.

A “preloading policy” aims at reducing this delay; the basic idea is to anticipate
what images may be requested in the future and start loading them onto free blades
in advance of reservations.

The remainder of the paper is organized as follows. In Section 2, we define the
preloading policies we have evaluated. In Section 3, we describe the VCL testbed we
have used in this study. In Section 4, we evaluate the preloading policies using actual
reservation data from approximately four years’ worth of VCL operations at NCSU.
In Section 5, we evaluate the policies using synthetic workloads and examine how
system configuration parameters can be selected to optimize performance criteria.

2. EXAMPLES OF PRELOADING POLICIES

Let’s define

—N: number of blades in the system. All blades are assumed equivalent, for
simplicity.

—M: number of different types of images to be preloaded.

—S(I): the average amount of time (in minutes) it takes the VCL managing soft-
ware to load image I onto a free blade.

When the system initializes (e.g., beginning of a new day), the preloading policy
is any rule that selects K (I) blades on which to preload image I. The sum

> K(I)=N'<=N.

We allow for the sum to be strictly less than N for generality and to save preload-
ing overhead (in case we have “networking/power consumption” constraints). N’
is a configurable constant.

Some examples of initial preloading policies (IPP) include:

—IPP1: Uniform, maximal preloading. Set
K(I) = floor(N'/M), for all I.
—IPP2: Uniform, minimal preloading. Set
K(I)=1, foralll.

While the system is operational, the operational preloading policy (OPP) is any
rule that determines what image to load on a free blade. We define a blade as free
if it is turned on, not assigned to a user and not preloading any image. We need
some data structures in support of the OPP. Let’s define

—LF(I,t): the number of free blades at time ¢ that have already image T loaded,

ACM Transactions on Computational Logic, Vol. V, No. N, May 2008.

Preloading policies for the Virtual Computing Lab . 3

x10° Popularity of VCL images
T T T

Frequency
-
&l
T
L

-
T
I

0.5 3

. A“AMAJ\ el Aﬁlund\ M

1
[¢] 50 100 150 200 250 300 350 400
Image 1D

Fig. 1. Popularity of the images in VCL, years 2004-2008.

—LB(I,t): the number of busy blades at time ¢ that have already image I loaded,
—FR(I): the “popularity” (e.g., the frequency of use) of image I.

Figure 1 depicts the popularity of the images in VCL.

The decision instant ¢ can be the arrival time of a reservation request, the time
when a user relinquishes a blade, or any policy-dictated instant; for example, the
decision instants can form a periodic sequence. When a blade becomes free, at time
t, we assume that the existing image is “erased” since in most cases the users have
administrative privileges and hence cannot be trusted.

The preloading policies can be based on the data structures we defined. One
basic idea is to try to have, at any time instant, at least one copy of an image
loaded, on a free blade, so that the incoming instantaneous reservation request can
be granted without the user incurring the S(I) waiting time.

Some examples of operational preloading policies (OPP) we have evaluated are:

OPP1: Uniform, maximal set of available, free images. Sort LF(I,t) with
respect to I, in increasing order. Load the image I that corresponds to the minimum
{LF(I,t)}. Break ties randomly.

OPP2: Uniform, maximal set of available, free + busy images. Sort LF(I,t) +
LB(1,t) with respect to I, in increasing order. Load the image that corresponds
to the minimum {LF(I,t) + LB(I,t)}. Break ties randomly.

OPP3: Most frequent image preloading. Sort FR(I) in decreasing order. Sort
LF(I,t) with respect to I, in increasing order. Load the image that corresponds
to the minimum {LF(I,?)}. Break ties according to F'R(I) order.

OPP4: Threshold-limited preloading. OPP1-OPP3 can be thought of as at-
tempts to maximize user-centric performance measures. OPP4 aims to minimize
preloading activities (power consumption) when the administrator deems that there
are “enough” preloaded images of any type. OPP4 makes sure that the number of
preloaded copies of an image does not exceed a given, configurable threshold; for

ACM Transactions on Computational Logic, Vol. V, No. N, May 2008.

4 . Keerthana Boloor et al

example, it makes sure that
LF(I,t) <= K, foralll.

(K is a configurable constant; K = 2, for example).

The definition of OPP1-OPP4 is based on the following principles: (a) they
should make use of historical data, (b) they should be simple to implement, and
(c) they should incur low overhead. All policies use data structures that require
O(M) memory, a simple sorting operation on the data structures and historical data
(FR(I)) which needs to be processed only once. Note that more “sophisticated”
processing of historical data is possible (e.g., producing image popularity based on
time of day); however, we chose not to experiment with it in the present phase.

3. EXPERIMENTAL ENVIRONMENT AND PERFORMANCE METRICS
3.1 Current VCL environment and historical data

We have historical records from the operation of the NCSU VCL over the years
2004-2008. The records include four main components: arrival times for reservation
requests, image requested, duration of request and waiting time for image loading.

Approximately 155,000 records have been collected and used in this study. There
are two types of reservation requests which we have excluded from the data for the
purposes of this study - future reservations and block reservations (they represented
approximately 5% of the total number of requests. Around 35 to 40 minutes before
the start time, the machine will start to be preloaded with that reservation’s image
(if it is idle and not already loaded with it). Block reservations are used primarily
for classroom use of VCL. For these, some number of machines is set aside for a
specific set of users, for a specific time, using a specific image. The machines are
preloaded with the image to be ready at the beginning of the specified time period.

The number of blades, N, has been increasing through the years; currently,
N =~ 150. The number of images, M, has also been increasing; currently, M = 380,
with about 50 images being used 90% of the time. In Figure 1, we depict the
frequency with which images are requested by the users.

In Figure 2, we depict the average waiting time a user spends before their re-
quested image is loaded. Data for such waiting times were recorded only for years
2006-2008 (approximately 40,000 records). The overall system average was found
to be around 12 minutes. This is the “benchmark” figure that any preloading policy
should improve upon.

3.2 Performance metrics

Performance metrics of interest in this study include user- and system-related statis-
tics:
We define the following waiting time metrics for user requests:

—FEW: average waiting time for all users (single number, measured in minutes)

—EW(I): average waiting time per image I (M numbers, measured in minutes)
We define the following system utilization:

—FEU: average system utilization (single number, dimensionless)

ACM Transactions on Computational Logic, Vol. V, No. N, May 2008.

Preloading policies for the Virtual Computing Lab . 5

25

20 B

=
5
T

Average loading time
.
IS
T

0 I I I I I I
0 50 100 150 200 250 300 350

Image ID

Fig. 2. Average waiting time, without any preloading, as a function of the requested image.

—FEU(I): average system utilization per image I (M numbers, dimensionless)

Note that system utilization is directly proportional to power consumption and
can be used to define preload policies that aim at reducing it.

4. PRELOADING POLICY ANALYSIS, VCL HISTORICAL DATA

We have evaluated user waiting times, EW and EW(I), blade and system uti-
lization, EU and EU(I), for OPP1-OPP4, using the reservation records from the
NCSU VCL.

During part of its operation, VCL has applied some form of limited preloading:
Linux images have always been preloaded on a subset of blades. Unlike other
images, which are always “removed” from a blade after a reservation is finished,
Linux images always remain loaded on the blade. From the historical data, we have
calculated that the overall system utilization was quite low; assuming operations
24 hours a day, 7 days a week, the calculated utilization was below 10%.

In figure 3 we plot the EW metric, as a function of the system utilization, EU.
N; we have varied the number of blades, N, in order to change FU. In doing so, we
have introduced some blocking, which was comparable for all policies. In obtaining
the results, we have excluded from the data the preloaded Linux images. Note that
OPP3 performs the best in all utilizations, reducing waiting times by about 50%
on average (calculated across all utilization levels).

5. PRELOADING POLICY ANALYSIS, SYNTHETIC WORKLOAD DATA

We have then simulated arrival times for reservation requests, image requested,
duration of request and waiting time for image loading to analyze “system design,
what-if” questions about the effects of system configuration parameters and set-
tings on variations of OPP1-OPP4. For simplicity, arrival times were assumed to
be a Poisson process, with rate R requests per minute. The rate R was tuned

ACM Transactions on Computational Logic, Vol. V, No. N, May 2008.

6 . Keerthana Boloor et al

13

12+

11

10

T = = = No preload|
—8— OPP1
61 ' ——opP2 1

—A— OPP3
—4—OPP4

Average waiting time, minutes

3 ; ; ;
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Utilization

Fig. 3. Average waiting times, OPP1-OPP4 and “no preload” policies.

(along with duration of request) to derive a desired system utilization. The image
type was modelled as a random variable, I, drawn from a distribution that matches
the popularity of images in the current VCL, 50 most popular images only. The
duration of a request was modelled as a random variable, D, drawn from a distri-
bution that matches the current VCL records, including extension times. Finally,
the waiting times for image loading were modelled as a random variable, W, drawn
from a distribution that matches the current VCL records, 50 most popular images
only.
The questions we focused on were:

—How preload policies behave as system utilization increases?
—Can we gain by “designing the number of images” M?
—Is K an “effective parameter for controlling power consumption and user delay?

5.1 System utilization experiments

In Figure 4, we show the behavior of OPP1-OPP4 as system utilization increases.
We varied the request arrival rate in this experiment; the blocking probability was
comparable for all policies. OPP3 performed best in this experiment as well.

5.2 Number of images experiments

Recall that the analysis of the historical data showed that three out of four preload
policies behaved approximately the same. We attribute this behavior mostly to the
fact that utilizations were low and the number of images was too high, for these
preloading policies to have any significant effect.

In Figure 5, we show the behavior of OPP1 and OPP3 as the number of images
is varied. We use a “no preload” policy as a benchmark; the number of blades was
set to 155. We have assumed that E'L, the average loading time per image grows
linearly as a function of the number of supported images, M, with a minimum of
12 minutes (for M = 1) and a maximum of 45 minutes (for M = 50).

ACM Transactions on Computational Logic, Vol. V, No. N, May 2008.

Preloading policies for the Virtual Computing Lab . 7

35 _— =S == === ar—— === === = = =

= = = No preload
30 | =—8— OPP1
—p— OPP2
—&— OPP3

2511 —g¢—oPPa

201

Average waiting time, minutes

0 0.2 0.4 0.6 0.8 1
Utilization

Fig. 4. Average waiting times, OPP1-OPP4 and “no preload” policies, as a function of system
utilization.

25 .
No preload
—P— OPP3

—h— OPP1 —

N
S}
T
I

N
o
T

=
o
T

Average waiting time, minutes

@
T

; ; ; ; ; ;
0 5 10 15 20 25 30 35 40 45 50
Number of Images

ol I I I

Fig. 5. Average waiting times vs the number of images, M.

Recall that OPP3 takes into account the popularity of images for its preloading
decision, while OPP1 does not. As Figure 5 depicts, when the number of images is
less than the number of available blades, taking popularity of images into account
does have a significant effect. Even a random selection of what image to preload
reduces the average waiting time significantly, compared to a no preload policy.

5.3 Effect of the parameter K

In Figure 6, we show the behavior of OPP4 as the parameter K is varied. In this
experiment, we have assumed 155 blades and 50 images. The average loading time

ACM Transactions on Computational Logic, Vol. V, No. N, May 2008.

8 . Keerthana Boloor et al

24 T

220 : B

Average waiting time, minutes

Fig. 6. Average waiting times vs K.

is 45 minutes. Recall that K is a parameter that limits the number of blades with a
preloaded image. Setting K = 2, for example, would mean that up to 2 x 50 = 100
blades would be used for preloading at any time, leaving room for reducing power.

In Figure 6, the curve with circles depicts the behavior of OPP4 with ties broken
randomly. The curve with triangles depicts the behavior when the popularity of
images is taken into account. We observe that OPP4 reduces the waiting time by a
factor of 2 to 4. The effect of the parameter K appears to diminish, as K increases,
in both cases. Note that waiting times increase as K increases due to the fact that
popularity of images is highly uneven in this experiment. The conclusion of this
experiment is that having more than one preloaded image does not really improve
waiting times and hence small values of K should be preferred for reducing power
costs.

6. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we have defined several preloading policies for use in a VCL envi-
ronment. We have shown via actual and simulated data that they can significantly
reduce user-experienced delays, while at the same time they can also be used to
control system utilization/power consumption. The policies are simple to imple-
ment and incur limited CPU and memory overhead. Further work can be directed
towards (a) defining rules for selecting appropriate image bundles, and, (b) defining
“best practices” for setting system configuration parameters.

ACM Transactions on Computational Logic, Vol. V, No. N, May 2008.

